iSLAMi GiZLi iLiMLER SiTESi
Vakit Namazınızı Kıldınızmı?

Hoş Geldiniz Forumdaki Konulardan Tam Anlamıyla Faydanalabilmek İçin Giriş Yapınız Uye Degılsenız 1 Dakıkanızı Ayırarak Kayıt Olunuz---ByNoKta
iSLAMi GiZLi iLiMLER SiTESi
Vakit Namazınızı Kıldınızmı?

Hoş Geldiniz Forumdaki Konulardan Tam Anlamıyla Faydanalabilmek İçin Giriş Yapınız Uye Degılsenız 1 Dakıkanızı Ayırarak Kayıt Olunuz---ByNoKta
iSLAMi GiZLi iLiMLER SiTESi
Would you like to react to this message? Create an account in a few clicks or log in to continue.

iSLAMi GiZLi iLiMLER SiTESi

CİNLERE, ŞEYTANLARA, İFRİTLERE ve DİĞERLERİNE, BÜYÜYE VE SİHRE KARŞI İNSANLARIN KALESİ ( SİTEMİZDEKİ HERŞEY ÜCRETSİZ ve KARŞILIKSIZDIR )
 
AnasayfaAnasayfa  Latest imagesLatest images  Kayıt OlKayıt Ol  Giriş yapGiriş yap  

 

 Galiba Yığışma Teorisi

Aşağa gitmek 
YazarMesaj
ulvi
Administrator

Administrator
ulvi


Mesaj Sayısı : 3306
Kayıt tarihi : 30/10/09

Galiba Yığışma Teorisi Empty
MesajKonu: Galiba Yığışma Teorisi   Galiba Yığışma Teorisi Icon_minitimeCuma Ocak 29, 2010 5:41 pm

Güneş sistemi'nin oluşumuna ait modern görüşe göre, başlangıçta civarındaki ortam ile bir basınç dengesini koruyan yavaşça dönen bir gaz bulutu vardı. Şekil 2'de de görüldüğü gibi nebula olarakta adlandırılan bu gaz bulutu on milyonlarca yıldır sıradan bir bulut olarak duruyordu. Belki de, spiral bir yoğunluk dalgasının geçişi ile sıkışma sonucunda, bu civarda büyük kütleli bir yıldız doğdu ve bu büyük kütleli yıldız bir süpernova patlaması geçirip öldü. Süpernova patlaması ile üretilen şok dalgaları sözünü ettiğimiz buluta çarparak çökmesine neden oldu. Böyle bir ivme ile bulut çökmeye ve dönmeye başladı. Bulut hızlı bir şekilde döndükçe manyetik kuvvet çizgileri ile sarıldı. Manyetik alan kuvvet çizgileri merkezdeki korun dönme hızını yavaşlatırken, en dış halkada kalan maddeyi daha hızlı döndürdü. Bu yüzden açısal momentumun çoğu, ilkel güneş nebulasının en dışındaki maddede kaldı. Yapılan hesaplar Güneş'in bugün gözlediğimizden çok daha hızlı bir şekilde dönmesi gerektiğini göstermektedir. Fakat, bugün Güneş 2 km/sn lik bir hız ile yavaş dönmektedir. Bunun nedeni de, Güneş'in ömrünün ilk bir kaç milyar yıl süresinde, rüzgarlar ile kütle kaybederek, açısal momentum kaybetmiş olmasındandır.

Hızlı bir şekilde çöken bulut yavaşça dönen yoğun bir kor geliştirdi ve Güneş'i oluşturmak için ayrılarak, dönen bir gaz bulutu ile kuşatıldı. Bu gaz bulutu proto nebula (ilkel güneş bulutu) olarak adlandırılır (Şekil 3a). Bu ilkel Güneş bulutu pek çok toz partikülleri ile gaz atomlarını içermektedir. Dönen bu ilkel Güneş bulutundaki gaz ivmelenerek, bulut içersine düşmekten kurtuldu. İlkel Güneş'in başlangıçtaki büzülmesi sırasında, gaz o kadar sıcaktı ki (2000 oK), bu sıcaklık daha önce den mevcut olan toz grenlerini (zerrecikleri) eritmiş olmalıydı. İlkel Güneş'in dışarısındaki gaz soğudukça, yeni toz zerrecikleri çoğunluğu kar taneleri formunda yoğunlaştılar. İlk önce metalik ve erimeyen toz zerrecikleri oluştu. Sıcaklık düştükçe buharlaşabilen buzlu toz zerrecikleri oluştu. İlkel Güneş bulutundaki, katı toz partikülleri soğuyarak, ilkel Güneş'in ekvator düzlemindeki gazın bulunduğu son derece ince bir disk içersine doğru düştüler. Toz partikülleri, tek tek gaz atomların-dan daha ağır olmasına rağmen, toz bir disk içersine çöktükçe, gaz küçük bir direnç gösterdi. Soğuk tozdan ibaret ince disk çekimsel olarak kararsız kaldı. Toz zerrecikleri, basınç kuvvetleri tarafından engellenemediler ve daha yoğun bölgelere doğru düştüler. Sonuç olarak, toz zerrecikleri, etrafındaki toz grenleri ile etkileşerek küçük yığınlar şeklinde biçimlenmeye başladı. Toz greninin kendi çekimi, kendi basıncına üstün gelerek yığınlar oluştu. Bu yığınlar, bugünkü gezegenler arasında bulunan asteroidler şeklindedir. Bu yığınlar, planetesimaller olarak adlandırılmaktadır. Bugün gözlediğimiz asteroidler ve kuyruklu yıldızların çekirdekleri planetesimallerin kalıntılarıdır.


Soğuk toz grenlerinin bir araya gelerek yığınlar oluşturması azda olsa bir muammadır. Bunun için şöyle bir senaryo düşünülmektedir: Bir olasılıkla, toz grenlerinde buz hakimdi ve bu toz grenleri tüy gibi yumuşak idiler. Böylelikle de kolaylıkla birbirleri ile birleştiler. Tıpkı kar tanelerinin bir kartopu şekline sıkıştırılmaları örneğinde olduğu gibi. Şekil 3b'de oluşmakta olan Güneş'in etrafında yörüngede dolanan Planetesimallerin biri, diğeriyle etkileştiler. Küçük kaya parçaları şeklinde olan bu Planetesimaller, büyük olanlarla çarpıştılar ve kırıldılar. Daha çok etkileşmeler meydana geldikçe kalıntılar bir araya toplanarak, katı kaya içersine sıkıştırıldılar. Sonunda bu yapılar, gezegen boyutlarına kadar geldiler. Planetesimallerin çoğu 100 milyon yıl içersinde, gezegen ve uydulara dönüştüler. Diğerleri büyük cisimler ile etkileşerek harcandılar. Oluşan gezegen, kalıntılarını kendi yörüngesinde topladı. Bugün için, Ay, Merkür ve Mars üzerindeki krater çalışmaları şunu göstermektedir; 4.5 milyar yıl önce krater oluşum hızında şimdiki ile karşılaştırıldığında bin kat bir artış vardı. Bu kraterler ancak, 100 km veya daha fazla çapa sahip asteroid boyutundaki planetesimallerin çarpmasıyle meydana gelmiş olabilir.


Bu arada genç Güneş parlamaya başladı. Güneş ışınları, etrafındaki toz örtüsüne nüfus ettikçe, enerji girişi oluşan gezegenlerin özelliklerini etkiledi. Güneş'in yakınında ısı çok yüksekti, ve buzları buharlaştırdı. Sadece erimeyen kaya benzeri ve metalik partiküller kalabildi. Bu yüzden Güneş'e yakın olan ve iç gezegenlerde yoğun kaya maddeleri oluştu. Bu gezegenler nispeten küçük kütleye sahip olduklarından çok fazla miktarda hidrojen ve helyum tutamadılar. Güneş sisteminin dış bölgelerinde, sıcaklıklar buzları eritemeyecek kadar düşüktü. Daha büyük kütleli gezegenler buralarda oluştular ve büyük kütlelerinden dolayı hidrojen ve helyumu tutabildiler. Bu suretle, en dıştaki dev gezegenler daha büyük kütleli fakat nispeten düşük yoğunluğa sahiptirler. Çoğunlukla hidrojen ve helyum'dan ibarettirler. Jüpiter ve Satürn sıvı metalik hidrojen korlarına sahiptirler, bu gezegenlerin merkezlerinde daha ağır elementler kaya benzeri bir çekirdek oluşturur. Hidrojen öyle bir basınç altındadır ki elektronlarını kaybetmiş ve bir metal gibi davranır. Hızlı dönmelerinin bir sonucu olarak, gezegenler çok kuvvetli manyetik alanlar üretirler. Bu manyetik alanlar, Jüpiter'in etrafındaki radyasyon kuşaklarındaki elektronları ivmelendirerek ve radyo emisyon patlamalarını harekete geçirerek kendilerini gösterirler. Dış gezegenlerin uyduları, buzlardan meydana gelen hafif elementleri tutabilmişlerdir.

Bu modern yığışma teorisine göre, çoğu gezegenler, ilkel Güneş'in etrafında yassılaşmış bir disk içersinde dolanan pek çok küçük cismin bir araya toplanarak yığılmasından oluştular. Bu teori gezegenlerin bir merkez etrafında ve kendi ekseni etrafındaki dönmelerini açıklamaktadır. Uranüs istisnadır. O zaman Uranüs, birkaç yada iki cismin birleşmesinden oluştu. Bu onun dönme ekseninin rastgele yönlenmesi ile sonuçlandı ve ekliptiğe olan 90 derecelik eğimini açıklayabildi.

Buraya kadar, ilkel Güneş ve gezgenlerin oluşumu açıklanmaya çalışıldı. Peki bu ilkel Güneşin parlamaya başlaması nasıl oldu.

Yaklaşık 4.5 milyar yıl önce, bir yumru süpernova patlaması ile uzaya atılan ağır elementler ile zenginleşen yıldızlararası gaz ve tozu kendine doğru çekti ve çekimsel olarak büzülmeye başladı. İçeriye doğru çöken trilyonlarca gazın ağırlığı altında kalan kor büzüldü. Kor, çekimsel ve kinetik enerjisini ısı enerjisine dönüştürdükce, sıcaklığını 30 oK den yaklaşık 180.000 oK e kadar artırdı. Bu aşamada üretilen kordaki ısı, çekimsel enerjiyi dengeleyerek dış tabakaların içeriye doğru çökmesini engelledi. Böylelikle, ilkel Güneş bir denge durumuna geldi. İlkel Güneş sürekli hareket halinde bulunan sıcak ve soğuk gaz kürecikleri halindeydi. Sıcak kordan çıkan ısı hızlı bir şekilde yüzeye doğru yükseldikçe, üst taraflardaki soğuk halde bulunan gaz sıcak madde ile yer değiştirerek merkeze doğru düştü. Bu şekilde ilkel Güneş'te, ilk defa enerji taşıma prosesi meydana geldi. Bu proses konveksiyon olarak bilinir. Konveksiyonun devreye girmesiyle korun basınç ve sıcaklığı düştü. Bununla birlikte, ısı kordan yüzeye doğru taşınmasıyla, en dış tabakalardaki soğuk ve büyük kütle, merkeze doğru düşerek koru sıkıştıdı ve yoğunluğunun artmasına, sıcaklığının da 4 milyon oK'e yükselmesine neden oldu. İşte bu sıcaklık, kordaki hidrojeni helyuma dönüştürerek nükleer reaksiyonları başlattı. Bu şekilde Güneş, yıldızlararası bulutun şok dalgaları ile sıkıştırılmasından itibaren oluşan ilkel Güneş bulutundan anakola 30 milyon yıl gibi bir süre içersinde gelip ışıma yapmaya başladı

Güneş'in anakoldaki ömrünü şu şekilde hesaplayabiliriz. Güneş'in yüzeyinden saniyede yayınlanan enerjisi,


Lo= 4 p R2 s T4

Bu bağıntıda, R: Güneş'in yarıçapı, T : Güneş'in etkin sıcaklığı, s : Stefan-Boltzman sabiti dir.



Lo = 4 x 3.14 x (700.000 km)2 x 7.56 x 10-15 x (5780)4 = 3.8 x 1033 erg/sn

Güneş'in korunda, hidrojen çekirdeklerinin, helyuma dönüşmesinden ileri gelen kütle eksilmesi 0.007 kadardır. Güneş'in koru, toplam kütlenin %10'unu içerir. O zaman Güneş'in toplam nükleer rezervi, c: ışığın hızı , M: Güneş'in kütlesi olmak üzere,


Eo = 0.007 x M x c2 = 0.007 x 0.1 x 2 1033 x (3 1010)2 = 1.26 x 1051 erg

T = (1.26 x 1051) / (3.8 x 1033) ~ 10 milyar yıl

Bu hesaba göre, Güneş'in ömrü 10 milyar yıldır. Yapılan hesaplar Güneş'in bugünkü yaşını 4.5 milyar yıl olarak vermektedir. Demek ki, Güneş'in geriye 5.5 milyar yıllık bir ömrü kalmaktadır. Güneş şimdi 4.5 milyar yıl yaşında , anakolda bulunmakta ve bize ışınım göndermektedir.

Alıntıdır
Sayfa başına dön Aşağa gitmek
 
Galiba Yığışma Teorisi
Sayfa başına dön 
1 sayfadaki 1 sayfası

Bu forumun müsaadesi var:Bu forumdaki mesajlara cevap veremezsiniz
iSLAMi GiZLi iLiMLER SiTESi :: 

Uzay, Dünya ve Bilim

 :: Uzay Boşluğu, Galaksiler, Yıldızlar, Gezegenler Ve Diğerleri
-
Buraya geçin: